
International Journal of Theoretical Physics, Vol. 39, No. 7, 2000

Fluctuations of Energy Density and Validity of
Semiclassical Gravity
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From calculations of the variance, or the fluctuations, and the mean energy density
of a massless scalar field in the Minkowski vacuum as a function of an intrinsic
scale defined by the world function between two nearby points (as used in point
separation regularization), we show that, contrary to prior claims, the ratio of
variance to its mean squared being of the order unity does not imply a failure
of semiclassical gravity. It is more a consequence of the quantum nature of the
state of the matter field than any inadequacy of the theory of spacetime with
quantum matter as source.

1. INTRODUCTION

Recent years have seen the beginning of serious studies of the fluctua-
tions of the energy momentum tensor (EMT) Tmn of quantum fields in space-
times with boundaries [1] (such as the Casimir effect [2–4]), nontrivial
topology (such as imaginary-time thermal field theory), or nonzero curvature
(such as the Einstein universe) [5]. A natural measure of the strength of
fluctuations is x [6], the ratio of the variance Dr2 of fluctuations in the energy
density (expectation value of the r̂2 operator minus the square of the mean
r̂ taken with respect to some quantum state) to its mean squared (square of
the expectation value of r̂):
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r2 (1.1)

Alternatively, we can use the quantity introduced by Kuo and Ford [4],
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Assuming a positive-definite variance, Dr2 $ 0, then 0 # x # ` and 0 #
D # 1 always, with D ¿ 1 falling in the classical domain. Kuo and Ford
(KF) displayed a number of quantum states (vacuum plus two-particle state,
squeezed vacuum, and Casimir vacuum) with respect to which the expectation
value of the energy momentum tensor (00 component) gives rise to negative
local energy density. For these states D is of the order of unity. From this
result they drew the implications, among other interesting inferences, that
semiclassical gravity (SCG) [7] based on the semiclassical Einstein equation

Gmn 5 8pG^T̂mn& (1.3)

(where Gmn is the Einstein tensor and G the Newton gravitational constant)
could become invalid under these conditions. Incorporating fluctuations of
quantum fields as source elevates SCG to the level of stochastic semiclassical
gravity (SSG) [8] based on the Einstein–Langevin equations [9], which is
an active area of current investigation focusing on stochastic fields and metric
fluctuations. The validity of semiclassical gravity in the face of fluctuations
of quantum fields as source is an important issue which has caught the
attention of many authors [10]. We hold a different viewpoint on this issue
from KF, which we hope to clarify in this report. Details of our calculation
and discussions can be found in ref. 6.

There are two groups of interrelated issues in quantum field theory in
flat (ordinary QFT) or curved spacetimes (QFTCST), or semiclassical gravity
(SCG, where the background spacetime dynamics is determined by the back-
reaction of the mean value of quantum fields): one pertaining to quantum
fields and the other to spacetimes. We discuss the first set relating to the
fluctuations of the EMT over its mean values with respect to the vacuum
state. It strikes us as no great surprise that states which are more ‘quantum.’
(e.g., squeezed states) in nature than classical (e.g., coherent states) (see any
text in quantum optics [e.g., 11] may lead to large fluctuations comparable
to the mean in the energy density. This can be seen even in the ratio of
expectation values of moments of the displacement operators in simple quan-
tum harmonic oscillators.3 Such a condition exists peacefully with the underly-
ing spacetime at least at the low energy of today’s universe. We do not see
sufficient ground to question the validity of SCG at energy below the Planck
energy when the spacetime is depictable by a manifold structure, as approxi-
mated locally by the Minkowski space.

3 We thank A. Raval for this comment.
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To assess this situation we want to see what the variance of fluctuations
to the mean-squared ratio of a quantum field is for the simplest case of
Minkowski spacetime, i.e., good old quantum field theory. If D 5 O(1) holds
also for Minkowski space, where SCG is known to be valid, it would provide
a clear-cut contradiction to the criterion of KF. We find that D 5 2/5, indicating
that quantum fluctuations are indeed quite large. We view this result as
reflecting the quantum nature of the vacuum state and saying little about the
compatibility of the field source with the spacetime the quantum field lives in.

In contrast, our view on this issue is that one should refer to a scale (of
interaction or for probing accuracy) when measuring the validity of SCG.
The conventional belief is that when reaching the Planck scale from below,
QFTCST will break down because, among other things happening, graviton
production at that energy will become significant so as to render the classical
background spacetime unstable, and the mean value of quantum fields taken
as a source for the Einstein equation becomes inadequate. For this purpose
we wish to introduce a scale in the spacetime points where quantum fields
are defined to monitor how the mean value and the fluctuations of the energy
momentum tensor change. Point separation [13, 14] would be an ideal method
to adopt for this purpose. Another is by means of smeared fields [6].

In ref. 6 we derived expressions for the EM bitensor operator, its mean,
and its fluctuations as functions of the point separation r or smearing distance
s, for a massless scalar field in both the Minkowski and the Casimir space-
times. The interesting result we found is that while both the vacuum expecta-
tion value and the fluctuations of energy density grow as r, s → 0, the ratio
of the variance of the fluctuations to its mean squared remains a constant xd

(d is the spatial dimension of spacetime) which is independent of s. The
measure Dd [5 xd /(xd 1 1)] depends on the dimension of spacetime and is
of the order unity. It varies only slightly for spacetimes with boundary or
nontrivial topology. For example, Dd53 for Minkowski is 2/5, while for
Casimir it is 6/7. Add to this our prior result [5] for the Einstein universe,
Dd53 5 111/112, independent of curvature, and that for hot flat space [12]
Dd53 5 2/5, and we see a general pattern emerging.

These results allow us to address two separate but interrelated issues:
(a) The fluctuations of the energy density as well as its mean both increase
with decreasing distance (or probing scale), and (b) the ratio of the variance
of the fluctuations in EMT to its mean squared is of the order unity. We view
the first, but not the second, feature as linked to the question of the validity
of SCG—the case for Minkowski spacetime alone is sufficient to testify to
the fallacy of Kuo and Ford’s criterion. The second feature represents some-
thing quite different, pertaining more to the quantum nature of the vacuum
state than to the validity of SCG.
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We summarize the results of our recent calculations in Section 2 for
Minkowski space and use them to discuss the above issues in Section 3. We
also include the results of calculations by means of smear-field operators for
a Casimir topology in the Appendix for comparison.

2. POINT-SEPARATED ENERGY DENSITY AND
FLUCTUATIONS OPERATORS

For a classical (c-number) massless scalar field, the energy density is

r(t1, x1) 5 1–2 ((t1 f)2 1 (
›

¹f)2) (2.1)

For quantum fields the field quantities become operators. Point separation
consists of symmetrically splitting the operator product and similarly for the
derivatives of the field operators,

(t1f̂(t1, x1))2 → 1–2 ((t1f̂(t1, x1))(t2f̂(t2, x2))

1 (t2f̂(t2, x2))(t1f̂(t1, x1))) (2.2)

Perform a mode expansion for the field operator

f̂(t1, x1) 5 # dm(k1)(âk1uk1(t1, x1) 1 â †
k1u*k1(t1, x1)) (2.3)

with

uk1(t1, x1) 5 Nk1e
i(k1?x12t1v1), v1 5 .k1. (2.4)

where * dm(k1) is the integration measure and Nk1 are the normalization
constants.

Expanding the field operators and their derivatives in normal modes in
the expression for the energy density, and taking its vacuum expectation
value, we obtain

r(t1, x1; t2, x2) 5 ^0.r̂(t1, x1; t2, x2).0&

5 # dm(k1) N 2
k1v

2
1 cos(k1 ? (x1 2 x2) 2 (t1 2 t2) v1) (2.5)

Now consider the point-separated energy density correlation operator,
r̂(t1, x1, t81, x81)r̂(t2, x2, t82, x82), defined at pairwise points (x1, x81), (x2, x82). A
regularized energy density is obtained by taking the coincidence limit of the
pairwise points. The vacuum correlation function (second cumulant) for the
energy density operator is defined as
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Dr2(t1, x1, t81, x81; t2, x2, t82, x82) 5 ^0.r̂(t1, x1; t81, x81)r̂ (t2, x2; t82, x82).0&

2 r(t1, x1; t81, x81) r(t2, x2; t82, x82) (2.6)

Since the divergences present in ^0.r̂(t1, x1)r̂(t2, x2).0& for (t2, x2) Þ (t1, x1)
are canceled by those due to ^0.r̂(t1, x1).0& and ^0.r̂(t2, x2).0&, we can assume
(t81, x81) 5 (t1, x1) and (t82, x82) 5 (t2, x2) from the start. (This will be confirmed
during the computation of the vacuum expectation value, without recourse
to Wick’s theorem.) With this understanding we can define the vacuum energy
density correlation function as

Dr2(t1, x1; t2, x2) [ ^0.r̂(t1, x1)r̂ (t2, x2).0& 2 ^0.r̂(t1, x1).0&^0.r̂ (t2, x2).0&

5 Dr2(t1, x1, t1, x1; t2, x2, t2, x2) (2.7)

Considering just the square of the energy density operator for now, its
expectation value is

^0.r̂2.0& 5
1
4 # dm(k1, k81, k2, k82) Nk1Nk8

1Nk2Nk8
2(k1 ? k81 1 v1v81)(k2 ? k82 1 v2v82)

3 ei(k1?x11k8
1?x8

12k2?x22k8
2?x8

2)2i(t1v11t81v8
12t2v22t82v8

2)

3 H(dk1,k8
2dk8

1,k2 1 dk1,k2dk8
1,k8

2) 1
1
4

e22i(k1?x11k8
1?x8

11t2v21t82v8
2)dk1,k8

1dk2,k8
2

3 ((e2i(k8
1?x8

11t1v1) 1 e2i(k1?x11t81v8
1))(e2i(k8

2?x8
21t2v2) 1 e2i(k2?x21t82v8

2)))J
5

1
4 # dm(k1, k2)N 2

k1N
2
k2{(k1 ? k2 1 v1v2)2

3 (ei(k1?(x12x8
2)1k2?(x8

12x2))2i((t12t82)v11(t812t2)v2)

1 ei(k1?(x12x2)1k2?(x8
12x8

2))2i((t12t2)v11(t812t82)v2))

1 [v2
1(e2i(k1?(x12x2)2(t12t81)v1) 1 ei(k1?(x12x8

1)2(t12t81)v1))

3 v2
2(e2i(k2?(x22x8

2)2(t22t82)v2) 1 ei(k2?(x22x8
2)2(t22t82)v2))]} (2.8)

We recognize that the last two lines of the above expression is just
r(t1, x1; t81, x81)r(t2, x2; t82, x82). Thus, the remainder is the desired expression
for Dr2(t1, x1, t81, x81; t2, x2, t82, x82) This expression is finite for
(t81, x81) → (t1, x1) and (t82, x82) → (t2, x2) as long as (t1, x1) Þ (t2, x2). Letting
(t, x) 5 (t2, x2) 2 (t1, x1), our results for the energy density and its correlation
function are
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r(t, x) 5 # dm(k1)N 2
k1v

2
1 cos(x ? k1 2 tv1) (2.9)

and

Dr2(t, x) 5
1
2 # dm(k1, k2)N 2

k1N
2
k2(k1 ? k2 (2.10)

1 v1 v2)2 e2ix?(k11k2)1it(v11v2)

For a Minkowski space R1 3 Rd with d spatial dimensions the mode
density is

# dm(k) 5 #
`

0

kd21 dk #
Sd

21
dVd21 with #

Sd21
dVd21 5

2pd/2

G(d/2)
(2.11)

and the mode function normalization constant is Nk1 5 1/!2d11 pd v1. We
introduce the angle between two momenta in phase space, g, via

k1 ? k2 5 k1k2 cos(g) 5 v1v2 cos(g) (2.12)

The averages of the cosine and cosine squared of this angle over a pair of
unit spheres are

#
Sd21

dV1 #
Sd21

dV2 cos(g) 5 0 (2.13a)

#
Sd21

dV1 #
Sd21

dV2 cos2(g) 5
4pd

dG(d/2)2 (2.13b)

With these we can proceed to evaluate the point-separated energy density

r(t, x) 5 # dm(k) N 2
k v2 cos(x ? k 2 tv)

5
1

2dp(d11)/2 G((d 2 1)/2)

3 #
`

0
#

`

2`

cos (x kx 2 t!k2
' 1 k2

x) kd22
' !k2

' 1 k2
x dkx dk' (2.14)

where we take x 5 x1 2 x2 5 xx̂ and decompose k 5 (kx , k') into one
component along x̂ and two perpendicular to x̂. We change variables to kx

5 k cos f and k' 5 .k'. 5 k sin f. The final result for the point-separated
energy density in Minkowski space is (restricting to odd d )
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r(t, x) 5 2
(21)(d21)/2

2p(d11)/2

(dt2 1 x2)
(t2 2 x2)(d13)/2 G1d 11

2 2 (2.15)

For the energy density correlation function, after some integrations we find

Dr2(t, x) 5
G((d 1 1)/2)2

pd11 14t2x2 1 d(t2 1 x2)2

(t2 2 x2)d13 2 (2.16)

We can write the fluctuations in terms of the point-separated energy density as

Dr2(t, x) 5 xd(t, x)(r(t, x))2 (2.17)

and get

xd(t, x) 5
d 1 1

2 14t2x2 1 d(t2 1 x2)2

(dt2 1 x2)2 2 (2.18)

Or,

Dd(t, x) 5
(d 1 1)(4t2x2 1 d(t2 1 x2)2)

2(2t2x2 1 x4) 1 d 2 (3t4 1 2t2x2 1 x4) 1 d(t4 1 10t2x2 1 x4)
(2.19)

To extract physical meaning out of this for a pointwise quantum field
theory, we have to work in the (t, x) → 0 limit (recall t 5 t1 2 t2, x 5 x1

2 x2, x 5 .x.), for only then r(t, x) → ^0.r̂.0&. Taking the limit along the
time direction (x 5 0), we get

Dd(t, x 5 0) 5
d 1 1
1 1 3d

5 Dd,Minkowaki (2.20)

On the other hand, taking the limit along the spatial direction (t 5 0), we get

Dd(t 5 0, x) 5
d(d 1 1)

2 1 d 1 d 2 5 Dd,L,Reg (2.21)

where Dd,L,Reg is for the regularized fluctuations of the energy density for
Casimir space with periodicity L.

We can also approach this problem in another way. Since both the
point-separated energy density and the correlation function have a direction
dependence, we can “average” over the direction. We take the hyperspherical
averging procedure. This involves first Wick rotating to imaginary time (t
→ it). Then we take the hyperspherical average in the Euclidean geometry
and then Wick rotate back to Minkowski space. For the energy density
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rE(t, x) 5
G((d 1 1)/2)

2p(d11)/2

dt2 2 x2

(t2 1 x2)(d13)/2 (2.22)

Now expressing t 5 r sin u and x 5 r cos u, we can do the averging

rE(r) 5
1

2p #
2p

0

rE (r sin u, r cos u) du

5
G((d 1 1)/2)
2p(d13)/2 r d11 #

2p

0

(d sin(u)2 2 cos(u)2) du

5
(d 2 1) G((d 1 1)/2)

4p(d21)/2 r d11 (2.23)

Doing the same for the correlation function, we obtain

Dr2
E(r) 5

(d 1 1) G((d 1 1)/2)2

32pd12 r 2(d11) #
2p

0

(d 2 1 1 (d 1 1) cos(4u)) du

5
(d 2 2 1)G((d 11)/2)2

32pd11 r 2(d11) (2.24)

With these results, we have

xd,Avg 5
d 1 1

2(d 2 1)
and Dd,Avg 5

d 1 1
21 1 3d

(2.25)

independent of whether or not we Wick rotate back to Minkowski space.
It is interesting to observe that the three sets of results depend on the

direction in which the two points come together, and changes if one averages
over all directions. This feature of point separation is known, but it could
also reveal some properties of possible extended structure of the underly-
ing spacetime.

3. DISCUSSIONS

Let us first display the results of our calculations for the fluctuations of
the energy density and then ponder the implications of these findings for (a)
fluctuations to mean ratio and the validity of semiclassical gravity, (b) the
dependence of fluctuations on both the intrinsic scale (defined by smearing
or point separation) and the extrinsic scale (such as the Casimir or finite-
temperature periodicity), and (c) the treatment of divergences and meaning
of regularization [6].

In Minkowski space we obtain different results from three different ways
of taking the coincidence limit. They are given as follows:
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(i) Time-direction-separated points: Hot-flat space result [12]

Dd,Minkowski 5
d 1 1
1 1 3d

(3.1)

with the values

d 1
3 5
` Dd,Minkowski

1
2

2
5

3
8

1
3

(ii) Space-direction-separated points: Casimir results [3–6]

Dd,L,Reg [
Dr2

d,Reg

Dr2
L,Reg 1 (rL,Reg)2 5

d(d 1 1)
2 1 d 1 d 2 (3.2)

with the values

d 1
3 5
` Dd,L,Reg

1
2

6
7

15
16

1

(iii) Averaged Euclidean directions [6]

xd,Avg 5
d 1 1

2(d 2 1)
and Dd,Avg 5

d 1 1
21 1 3d

(3.3)

with the values

d 1
3 5
` Dd,Avg

1
1
2

3
7

1
3

3.1. Fluctuation to Mean Ratio and Validity of SCG

If we adopt the criterion of Kuo and Ford [4] that the variance of the
fluctuations relative to the mean squared (vev taken with respect to the
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ordinary Minkowskian vacuum) being of the order unity is an indicator of
the failure of SCG, then all spacetimes studied above would indiscriminately
fall into that category, and SCG fails wholesale, regardless of the scale
at which these physical quantities are probed. This contradicts common
expectation that the SCG is valid at scales below the Planck energy. We
believe that the criterion for the validity or failure of a theory in its depiction
of any system in nature should depend on the range of interaction or the
energy scale at which it is probed. Our findings here suggest that this is
indeed the case: Both the mean (the vev of EMT with respect to the Minkowski
vacuum) AND the fluctuations of EMT increase as the scale decreases. As
one probes into an increasingly finer scale the expectation value of EMT grows
in value and the induced metric fluctuations become important, signifying the
inadequacy of SCG. A generic scale for this to happen is the Planck length.
At such energy density and above, particle creation from the quantum field
vacuum would become copious and their backreaction on the background
spacetime would become important [7]. Fluctuations in the quantum field
EMT entails these quantum processes. The induced metric fluctuations [8,
9] render the smooth manifold structure of spacetime inadequate, spacetime
foams [15] including topological transitions [16] begin to appear, and SCG
no longer can provide an adequate description of these dominant processes.
This picture first conjured by Wheeler is consistent with the common notion
adopted in SCG, and we believe it is a valid one.

3.2. Dependence of Fluctuations on Intrinsic and Extrinsic Scales

Let us now look at the bigger picture and see if we can capture the
essence of the results with some general qualitative arguments. We want to
see if there is any simple reason behind the following results we obtained:

(a) Dd 5 O(1).
(b) The specific numeric values of Dd for the different cases.
(c) That Da for the Minkowski space from the coincidence limit of taking

a spatial point separation is identical to the Casimir case at the coincidence
limit (6/7) and identical to the hot-flat space result (2/5) [12] from taking
the coincidence limit of a temporal point separation.

Point (a) has also been shown by earlier calculations [4, 5], and our
understanding is that this is true only for states of quantum nature, including
the vacuum and certain squeezed states, but probably not true for states of
a more classical nature like the coherent state. We also emphasized that this
result should not be used as a criterion for the (in)validity of semiclassical
gravity.

For point (b), we can trace back the calculation of the fluctuations
(second cumulant) of the energy momentum tensor in ratio to its mean (first
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moment) to the integral of the term containing the inner product of two
momenta k1 ? k2 summed over all participating modes. The modes contributing
to this are different for different geometries, e.g., Minkowski versus Casimir
boundary—for the Einstein universe this enters as 3j symbols—and could
account for the difference in the numerical values of Dd for the different cases.

For point (c) the difference of results between taking the coincidence
limit of a spatial versus a temporal point separation is well known in QFTCST.
The case of a temporal split involves integration of three spatial dimensions,
while the case of a spatial split involve integration of two remaining spatial
and one temporal dimension, which would give different results. The calcula-
tion of fluctuations involves the second moment of the field and is in this
regard similar to what enters into the calculation of moments of inertia4 for
rotating objects. We suspect that the difference between the temporal and the
spatial results is similar, to the extent this analogy holds, to the difference
in the moment of inertia of the same object but taken with respect to different
axes of rotation.

It may appear surprising, as we felt when we first obtained these results,
that in a Minkowski calculation the result of Casimir geometry or thermal
field should appear, as both cases involve a scale—the former in the spatial
dimension and the latter in the (imaginary) temporal dimension. But if we
note that the results for Casimir geometry or thermal field are obtained at
the coincidence (ultraviolet) limit, when the scale (infrared) of the problem
does not intercede in any major way, then the main components of the
calculations for these two cases would be similar to the two cases (of taking
the coincident limit in the spatial and temporal directions) in Minkowski
space. All of these cases are effectively devoid of scale as far as the point-
defined field theory is concerned. As soon as we depart from this limit the
effect of the presence of a scale shows up. The Casimir result (calculation
in the Appendix) shows clearly that the boundary scale enters in a major
way and the result for the fluctuations and the ratio are different from those
obtained at the coincident limit. For other cases where a scale enters intrinsi-
cally in the problem such as that of a massive or non-conformally coupled
field it would show a similar effect in these regards as the present cases (of
Casimir and thermal field) where a periodicity condition exists (in the spatial
and temporal directions, respectively). We expect a similar strong disparity
between point-coincident and point-separated cases: The field theory changes
its nature in a fundamental way with nontrivial physical meaning beyond
this limit.

This raises another major issue brought to light in this investigation,
i.e., the appearance of divergences and the meaning of regularization in the

4 We thank A. Raval for this comment.
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light of a point-separated versus a point-defined quantum field theory. Since
we have the point-separated expressions of the EMT and its fluctuations we
can study how they change as a function of separation or smearing. In
particular we can see how divergences arise at the coincidence limit. Whether
certain cross terms containing divergence have physical meaning is a question
raised by the recent studies of Wu and Ford [17]. We can use these calculations
to examine these issues and ask the broader question of what exactly regular-
ization entails, where divergences arise, and how they are to be treated. The
consideration of divergences in the fluctuations of EMT requires a more
sophisticated rationale and reveals a deeper layer of issues pertaining to
effective versus more fundamental theories. If we view ordinary quantum
field theory defined at points as a low-energy limit of a theory of spacetime
involving extended structures (such as string theory [e.g., 18]), then these
results would shed light on their meaning and interconnections. We hope to
explore this issue in future studies.

APPENDIX A. CASIMIR ENERGY AND FLUCTUATIONS

We have also calculated the energy density and its fluctuations for a
Casimir space using smeared field operators assuming a Gaussian smearing
function with spread s [6]. The Casimir topology is obtained from a flat
space (with d spatial dimensions, i.e., R1 3 Rd) by imposing periodicity L
in one of its spatial dimensions, say, z, thus endowing it with an R1 3 Rd21

3 S1 topology. Decomposing k into a component along the periodic dimension
and calling the remaining components k', we get

k 5 1k',
2pn

L 2 5 (k', ln) (A1a)

v1 5 !k2
1 1 l2 n2

1 (A1b)

# dm(k) 5 #
`

0

kd22 dk #
Sd22

dVd22 o
`

n52`
(A1c)

Nk1 5
1

!2d Lpd21v1

(A1d)

With this, we calculated the regularized energy density

rL,reg [ lim
s→0

(rL(s) 2 r(s))

5
dpd/2 Bd11 G(2d/2) G(d/2)

2(d 1 1) Ld11 G (d/2 1 1)
(A2)

and get the usual results
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d 1 3 5
rL,reg 2p/6L2 2p2/90L4 22p3/945L6

For the fluctuations of the energy density,

Dr2
L(s) 5

l2

22d13 p2d o
`

n152`
o
`

n252`
#

`

0

kd22
1 dk1 #

`

0

kd22
2 dk2 #

Sd22
dV1 #

Sd22
dV2

3
e22s2(v2

1 1v2
2)

v1v2
(cos(g)k1k2 1 l2 n1n2 1 v1v2)2 (A3)

we obtain a regularized expression:

Dr2
L,reg 5 xd,L (rL,reg)2 (A4)

where

xd,L 5
d (d 1 1)

2
(A5)

For the dimensionless measure D we obtain a regularized expression:

Dd,L,Reg [
Dr2

L,Reg

Dr2
L,Reg 1 (rL,Reg)2 5

d(d 1 1)
2 1 d 1 d 2 (A6)

with the values

d 1 3 5 `

Dd,L,Reg
1
2

6
7

15
16

1
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